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The co-Technique is one of a number of ways of improving on the Hiickel model by introducing 
a dependence on atomic orbital populations into the matrix-elements of the effective Hamiltonian. 
It requires iterative solution of secular equations until the populations calculated from the solutions 
are consistent with the populations used in setting up the Hamiltonian matrix. We derive simple 
equations showing how the deviation s of the populations from their final self-consistent values change 
with successive iterations. The results of consideration of these equations in several special cases, 
imply that the populations oscillate about 'their final values on successive iterations, as has actually 
been found experimentally. This suggests a simple means of speeding up convergence. 
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1. Introduction 

The co-Technique, discussed by Streitwieser [1], is an iterative approximate 
molecular orbital theory which is an improvement  on the simple Htickel theory 
because it m a k e s  the diagonal matrix elements of the effective Hamil tonian 
(generally denoted by H u or ~) depend on the populations of the atomic orbitals. 
Given a set of atomic orbital populations qi, one puts 

H u  = ~i = 0% + o9/~(1 - qi) (1) 

for the diagonal matrix element corresponding to atomic orbital i. Here, ~0 is a 
constant, which may be taken as the value of this diagonal matrix element in the 
simplest Htickel theory, co is a positive parameter  of size unity whose value is 
chosen empirically, and/~ is an energy parameter  whose value may be chosen as the 
matrix element of the Hamil tonian between nearest neighbors in the Hiickel 
theory. Since ~0 and ~ are negative, an increase in qi makes ~ less negative, so that 
orbital i becomes less attractive to electrons. Having recalculated ~i according to 
Eq. (1), one solves the secular equations to determine new molecular orbital 
energies and coefficients. Then the values of qi and ~ may be recalculated and the 
procedure repeated. The recycling is continued until energies, molecular orbital 
coefficients, and ~i-values no longer change with each iteration (convergence). 

The simplest Htickel theory, in this context, corresponds to assuming q~ = 1 
for all i and making no effort to modify the ~i values according to populations or to 
achieve self-consistency between the molecular orbital coefficients calculated and 
the Hamil tonian integrals used. The choice, q~ = 1 for all i, is justified in calculations 
which in fact lead to equal populations. It is clear on physical grounds, however, 
that c h should depend on the population of orbital i, and the co-technique improves 
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results for many electronic properties as compared with the Hiickel model. In 
particular, charge buildups on atoms are reduced from unreasonably large values 
obtained when the Hiickel model is used [2]. The dependence of the Hamiltonian 
on the wavefunction (through orbital populations, for instance) is an important 
ingredient of ab initio Hartree-Fock and related calculations [3], and the ~o- 
Technique may be considered as a first step from the simplest molecular orbital 
calculations toward the more sophisticated and more realistic methods. In the 
present paper, we attempt to analyze the equations of the a~-Technique alge- 
braically in order to make some statements about its convergence properties. 
Perhaps the results will be of interest in subsequent analysis of other molecular 
orbital theories, which incorporate a dependence of Hamiltonian matrix elements 
on molecular orbital coefficients and require iterated solutions of the secular 
equation until self-consistency is reached. 

After introducing some notation, we derive the equations which relate the 
populations calculated from the solutions of the secular equation (i.e., the popula- 
tions after the n'th iteration) to the populations used in setting up the secular 
equation (i.e., the populations after the ( n -  l)'th iteration). By assuming that 
deviations from the final self-consistent results are not too large, we are able to 
linearize the equations and evaluate some of the unknowns. The equations are 
rearranged in a form which simplifies some analysis, and enables us to derive 
rigorous results in certain special cases. These results imply that the deviations 
of the populations from their final self-consistent values alternate in sign on 
successive iterations. Such an alternation has in fact been found in actual cal- 
culations [4]. 

2. Basic Equations 

In all our analysis, we assume that overlap integrals may be neglected. Their 
inclusion would probably not alter our results but would complicate the form of 
the equations. Ignoring overlaps means that the secular equation takes the form 

Z H~jC~k = EkC~k (2) 
J 

and that the population of atomic orbital i is calculated according to 

(occ) 

qi= 2 ~ CikCik . (3) 
k 

We are assuming real coefficients here to simplify notation. 
The superscript in parentheses labels the molecular orbitats, each of which 

is written as a linear combination.of atomic orbitals: 

l)(k)= Z Cik~)i" (4) 
i 

The number of atomic orbitals is n, and all sums run from 1 to n except where 
otherwise specified. In Eq. (3), the sum over molecular orbitals runs only over those 
occupied. For simplification, we assume all molecular orbitals are either doubly 
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occupied or empty. The molecular orbitals are orthogonal and assumed nor- 
malized, which, with the neglect of atomic orbital overlaps, means: 

Ci~Cii = ~kl. (5) 
i 

The coefficients also obey the "closure" relation, 

Z CikCsk = 6is (6) 
k 

(the sum runs from 1 to n). 
We label the exact, final, or self-consistent values of the Hamiltonian matrix 

elements, energies, populations, etc. by over-bars. They obey the Eq. (2) i.e., 

Z HisCsk = EkCik, (7) 
i 

where i = 1, 2 . . . . .  n; k = l, 2 . . . .  , n. At some stage of the iterative process, suppose 
we have 

Cik = Cik + 6C/k (8) 

and we use these coefficients to calculate values of His according to Eqs. (3) and (1). 
The solution of the secular equations with this Hamiltonian matrix leads to new 
coefficients ~k), where 

CI k)-- CIk)+ 6' CI k) . (9) 

We use 6 to indicate deviations of various quantities from their final values 
before, and 6' to indicate deviations after, solution of the secular equations. Thus, 

(H,J + ~/-/0 (Csk + ~' Csk) = (Ek + ~'e~) (C,~ + ~' C,~) (10) 
J 

for i =  1,..., n; k =  1 .... , n. If the deviations are not too large, products like 
6His6' C} k) may be neglected. Then we may use (7) to obtain linearized equations 
for the deviations after this stage of the iterative process in terms of the deviations 
before: 

2 (HiJ ~' Cjk -'}- ~ His Cjk) = Ek~'Cik -b 3'E kCik. (11) 
S 

Since only diagonal elements of the Hamiltonian matrix are changed in the 
co-Technique, 6Hij is a diagonal matrix. 

As in most problems of this kind (the linearization corresponds to first-order 
perturbation theory), one can find the change in the energy (6'Ek here) in terms of 
the unchanged coefficients. Multiply (11) by Cik and sum over i. Using Eqs. (7), (5), 
and (1), 

6'Ek = ~, C~k(-- coflfqi). (12) 
i 

The deviation of the orbital energy from its final value, after the iteration, is thus 
a weighted mean of the deviations of the populations from their final values 
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before the iteration. The weighting factors are squares of the exact or final mole- 
cular orbital coefficients, but, consistent with our neglect of products of deviations 
in linearizing the equations, one could use C~k (coefficient before iteration) or 
C;gk (coefficient after iteration) for Cik -- see Eqs. (8)-(10). 

We now substitute the result (12) into our Eq. (11) and rearrange to obtain: 

Now we proceed to express populations after iteration (6'q~) in terms of popula- 
tions before iteration (6qi). The quantities cS'q~ are given by 

1 (oct) (oct) 
-2-J'q~= ~ (C~k+b'C~k) 2 -  ~ C 2 

k k (14) 
(oct) - , 

= 2(Cik6 Cik) 
k 

since products like 6'Cikf'C~k are neglected. A useful expression is obtained from 
(14) when 6'CI k) is expressed in terms of the ~.t). Without loss of generality, we 
can write 

(~tCik = Z akCik  (15)  
l 

and solve for the coefficients a k, which will be independent of i. Substituting (15) 
into (13), multiplying by Ci,~(rn ~ k) and summing over i, and using (7) and (5), 

k Then substitution into (15) yields we can solve for am. 
(t~k) 

6'C,k=Ogfl E (Et-Ek) -1 ~ cjtCjkbqjCit. (16) 
t j 

The value of ak k, which could not be determined from (16), has been set equal to 
zero, which is equivalent to demanding that the molecular orbitals be normalized 
at each stage of the iterative process (and hence ~ - ' ] Cik6 Cik = 0 .  The result of (16) 
is substituted into (14). ~ i / 

Some further manipulations on the resulting equation put it in a more useful 
form. Note that k runs over occupied molecular orbitals, but l runs over all 
values not equal to k. 

(occ) (l~k) 

b'qi=4 ~, coil ~, (ff~t--Ek) -1Zt~qjClkCjlCjkCil. (17) 
k l j 

Consider the terms corresponding to l = occupied. In the double sum over k and l, 
each pair of molecular orbitals (k,/) will appear twice. The sum of products o f  
coefficients is the same each time (interchange of k and l leaves it unchanged) 
but the energy denominator changes sign. Thus, the sum of the two contributions 
vanishes and we are left with 

(oce) (unocc) 

6'qi=4~~ ~ E (EI--Ek) -1 CikCilCjlCjk �9 (18) 
j k l 
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Equation (18) is the desired result. It gives the deviations of populations from their 
final values, after an iteration, in terms of their deviations before the iteration. 

It should be noted that all the energy denominators in Eq. (18) are positive if the 
occupied orbitals are those of lowest energy, as is appropriate for the ground 
state. It may easily be shown that the sum of the deviations 6'qi is zero, as it should 
be: the sum of the populations is equal to the number of electrons and hence the 
same at each iteration. We have 

(oct) (unocc) 

E 6q'i = 4o~fl E 6qj E E (El-- E'k) -1 Z CikCuCjz Cjk 
i k k l i (19) 

(oce) (unoec) 

=4~ E tSqJ E E (ff'l-- Ek) - I CjlCjktSkl 
j k l 

on using (5). The factors 6kl lead to vanishing contributions when the sums over k 
and l are carried out since the conditions on the summations mean that k and l 
can never be equal. 

3. Special Cases 

We are interested in the relation of 6'qi to 6q~. Suppose first that the effect of 
6qj for j #  i can be neglected in (18). This could be due to the smallness of 6qj(j # i) 
or to cancellation between terms of different signs. Then we have 

(oct) (unoer 
6'qi=4o~fl 6q, E E (EI-Ek) -1 C2kC~/" 

k l 

Every term in the double summation is positive. Since fl is negative we can conclude 
that the 6'q~ is opposite in sign to 6qi. Thus, if the population of atomic orbital i 
is larger than its exact or final value before this iteration it will be smaller than 
its final value after the iteration and vice versa. 

Of course, it is impossible to have ~qi non-zero and 6qj(j # 0 zero because the 
deviations fiqj must sum to zero. One possible situation is to have all fiqj equal 
for j not equal tO i. This means 

gJqj = - (n - 1)- 1 ~qi(j # i) (21) 

where n is the number of atomic orbitals. In this case we can also show that the 
sign of 6'qi is opposite to that of 6qi. Equation (18) becomes: 

(o~) ( . . . . .  ) Cik--2 Ci ~ - 2  409fl 6qi (o~) ( . . . . .  ) CikCi_-2 -2_1 
6'qi----4(Oflfiqi~k ~l El--ffJk "'}- - n ~ l  Zk ~l El--Ek 

4a~flbq i (o~)o,~) CikCjlCjkCil 
n-- 1 E E--_~kk j k l 

We have written the sum over j (j # i) as the sum over j (all j) minus the term for 
j = i. Carrying out the sum over all j, we obtain in the iaumerator factors of 3kl, 
as in Eq. (19). Again, the conditions on k and I mean the sum of terms vanishes. 
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The remaining terms then give 
[ H \ (oct) (unocc) --2 ~2 

CikCil (23) 
E~k~ \ . - - l /  k l 

which shows that g)qi and 3qi have opposite signs. 
Since we have shown that S 3'qi vanishes, the sum of the other deviations after 

this iteration is opposite in sign to what it was before. If they are all about equal 
(they were assumed equal before the iteration), each has changed sign. Actually, 
it can be shown that (~'qh is opposite in sign to (~qh if 

(oct) (unocc) 

Z 2 ( E ' - ~ k ) - I  ChkCikCmCu 
k l 

is negative. Since ChkCik summed over all k vanishes, ChkCik must take on dif- 
ferent signs in different molecular orbitals, and it seems quite likely that the above 
double sum is indeed negative. The change in sign between J'qi and fiqj means 
that the populations qi oscillate about their final values during the iterative 
process, being alternately too large and too small. 

To discuss whether convergence to these final values actually takes place, 
one must know more about the problem being considered. Under the assumptions 
of Eq. (21), the ratio of the magnitudes of 3'qi and 6q~ (and also of the magnitudes 
of 6'qj and 6qj)  is 

(oct) (unocc) 

16' q,I/I,~q,I =(4n/n- 1)Ico[31 F, ~ C~C,~/(E,-E~). 
k l 

In a calculation on a linear re-electron system using a Hiickel method, g~-  E~ 
will be some negative multiple of [3([3 < 0), but does not increase with n: it never 
gets larger in size than 14131 or smaller than 12//I. The quantities C~ are each 
certainly less than unity because of normalization, but C~k and ~2 cannot simul- 
taneously be close to unity because of (6). In the worst case, each factor could 
equal �89 for one particular choice of k and 1. The sum reducing to one term, we 
would have 

16' q , l / I bq i /=  (4n /n  - 1)Ico[31-}(AE) - I 

where A E  is between -2[3 and -4/ / .  This would lead to convergence for 
co < n - 1/n, which is about unity. In general, we might expect a distribution of 
CZk over the filled and empty molecular orbitals, which would favor convergence 
with larger values of co. A commonly used value is 1.4. However, it is known [2, 4] 
that the method leads to divergence for some molecules and smaller values of co 
must be used than 1.4. In general, Eq. (18) implies improved convergence (smaller 
ratios of ]6'qil to [6qil) for larger molecular orbital energy differences, particularly 
between the highest occupied and the lowest unoccupied levels. Delocalization 
should also help convergence, since it would make individual molecular orbital 
coefficients smaller and lead to sign changes in the last factor. 

Perhaps one more special case deserves comment. Suppose all 3qj vanish 
except two, 3q~ and (~qh" Necessarily, we must have (~qh = --(~qf, which leads to 

(oec) (unoec) 
b'qi=4co[33ql ~ ~ ( E / - E k )  - 1  (C2k f2 - - f i k f i lCh tChk)  . (24) 

k l 
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While -2 -2 CikCu is necessarily positive for all k and l, the following terms have dif- 
ferent signs for different molecular orbitals. Some cancellation of their contribu- 
tions is to be expected (E~- Ek is always positive), suggesting that the result of 
the sums over k and l will be positive. The coefficient term in (24) may be re- 
arranged to 

Qkl = (Cikf i l )  2 -- (Chkfhl) 2 -~ ( C i k C i l -  ChkChl) 2. 

The corresponding quantity for calculations of 6'qh/fqh is obtained by inter- 
changing i and h, which interchanges the signs of the first two terms; call it Qkt. 
For each choice of k and l, at least one if not both of Qkl and Q~l must be non- 
negative. Qk~ will be non-negative if 

[~12__ l+l~_l[Z~0 

where C~=(CikCil)/(ChkChl), which is satisfied whenever ~ < 0  or c~> 1. Thus, 
we expect that 6'qi/fq~ will be negative. Of course, complete reversal of signs of 6qj 
is impossible here since the 6qj(j r  and j va h) are zero and the corresponding 
6'qj will not necessarily vanish. 

Let us summarize what has been shown. Assuming deviations of populations 
from their final values are not too large, we derived the linearized Eq. (18) ex- 
pressing the deviations after an iteration in terms of the deviations before the 
iteration. These equations are of the form 

(oct) (unocc) 

6' qi= Z fqJ E Z Cg~. (25) 
./ k l 

The quantities C~ had the following properties: 
(a) u " Ckt < 0 or all k and l, (b) C~ (i C j) can be of either sign, but ~ C~{ = 0 

i 
and ~ C~ = 0. This made it possible to show (5'qi/tqi < 0 in several special cases. 

J 

This means that the deviations of populations from their final values alternate 
in sign on successive iterations. 

4. Conclusions 

Therefore, the calculated population of a given atomic orbital will oscillate 
with successive iterations, as has actually been observed in numerical calculations 
[4]. Values of populations for alternate iterations follow relatively smooth curves. 
The correct final self-consistent populations are to be found between the extremes 
of the oscillations. This suggests more rapid convergence could be obtained by 
averaging each population with that resulting from the previous iteration, and 
using the average as the starting population for the next iteration. Such a scheme, 
implemented by Ettinger and by Davis and Potts [5], actually produced great 
improvements in the convergence rate of the iterative process, making possible 
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large decreases in computation time because of the decreased number of iterations 
necessary. Furthermore, convergence could be obtained [5] for all molecules, 
even with 09 equal to 1.4. The procedure, and the analysis given above, should be 
applicable to any theoretical model [3-1 which, like the og-Technique, modifies 
matrix elements of the Hamiltonian as a function of calculated populations in 
order to make large population buildups unfavorable. 

References 

1. Streitwieser, A.,Jr.: Molecular orbital theory for organic chemists, p. 115. New York: John Wiley 
1961 

2. For instance: Muller, N., Mulliken, R. S.: J. Chem. Soc. 80, 3489 (1958); Streitwieser, A., Jr., Nair, P.M.: 
Tetrahedron 5, 149 (1959); Scbolz, M., Heidrich, D.: Monatsh. Chem. 98, 254 (1967); Streit- 
wieser, A.,Jr., Heller, A., Feldman, M.: J. Phys. Chem. 68, 1224 (1964); Berson,J.A., Evleth, E.M.,Jr., 
Manatt, S.L.: J. Am. Chem. Soc. 87, 2901 (/965); Janssen, M.A., Sandstrom, J.: Tetrahedron 20, 
2339 (1964); Gayoso, J,, Andrieux, J.-C., Herault, V.: J. Claim. Phys, 66, 1631 (1969); Lynch, B.M., 
Robertson, A. J., Webb, J. G. K.: Can. J. Chem. 47, 1129 (1969); Huy, L.-K., Forst, W.: Theoret. Chim. 
Acta (Berl.) 16, 393 (1970); Et~inger, R,: Tetrahedron 20, 1579 (1964); Scholz, M., Heidrich, D.: 
Z. Chem. 9, 41 (1969) 

3. Pople, J.A, Beveridge, D.L.: Approximate molecular orbital theory. New York: McGraw-Hill 
1970; Scholz, M., Heidrich, D.: Z. Chem. 9, 41 (1969) 

4. Ettinger, R.: Tetrahedron 20, 2339 (1964); Davis, L.N., Potts, J.R., Macero, D.J.: paper presented 
to Div. of Org. Chem., Sect. C, No. 46, at 167th National Meeting, American Chemical Society, 
March 1974, and private communication 

5. Ettinger, R:: Tetrahedron 20, 2339 (1964); Davis, L.N., P0tts, Jr.R., Macero, D.J.: Submitted to 
J. Am. Chem. Soc. 

Dr. J. Goodisman 
Department of Chemistry 
Syracuse University 
Syracuse, New York 13210, USA 


